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Effect of isolation stress on anesthetic requirement in mice
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The enflurane sensitivities of the three strains of mice
were examined with respect to LORR over a period
of 3 h from 8 to 11 a.m. in a container [5]. The plastic
container had a fan to equalize the anesthetic concen-
tration and a carbon dioxide adsorbent, and the concen-
tration was continuously monitored with an anesthetic
agent monitor (Datex, Normac, Finland). Any manipu-
lation of the mice was conducted with a glove from
outside the airtight container, with the temperature
kept between 28° and 30°C. We regarded the mice as
being in anesthetic equilibrium after 15min of enflurane
at a constant concentration. LORR was determined to
have occurred if the mouse did not voluntarily right
itself when it was placed gently by hand in the dorsal
position without any violent movement or painful
stimulation. The enflurane requirement (ER) was de-
termined as the concentration at which the mouse re-
mained in the dorsal position for 10 s. The concentration
of enflurane was gradually increased by 0.1% until
LORR was confirmed.

The results were processed with StatView, version 4.5
(Abacus Concepts, Berkeley, CA, USA) using analysis
of variance (ANOVA) and the unpaired t-test as a post
hoc test. The data are shown as means � SD. P � 0.001
was considered to indicate statistical significance.

The ER values in GM and IM were 1.30% � 0.07%
and 1.69% � 0.05%, respectively, in ddN mice; 1.02%
� 0.08% and 1.26% � 0.05% in MSM mice; and
1.09% � 0.05% and 1.32% � 0.04% in C57BL/6J mice
(Fig. 1). The ratio of ER values in IM to those in GM
was 1.30 for ddN mice, 1.24 for MSM mice, and 1.21 for
C57BL/6J mice.

The ER in IM was about 1.2–1.3 times higher than
that in GM in ddN, MSM, and C57BL/6J mice. Norepi-
nephrine levels are particularly related to threat and
offense [6–8]. We suspected the following reasons for
the differences between the ER values of IM and GM.
We preliminarily studied brain norepinephrine
levels in ddN mice and C57BL/6J mice by HPLC (high-
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Many studies have measured anesthetic requirements in
order to determine anesthetic potency. The measure-
ments in mice have been used to clarify anesthetic
mechanisms, using the index for loss of righting reflex
(LORR) [1] and the tail-flick test. However, many fac-
tors can affect anesthetic requirements [2]. Researchers
have found widely divergent values for anesthetic re-
quirements of mice. Male mice by nature suffer chronic
stress because they tend to fight over territory in their
cages, occasionally to the death [3]. There are no studies
examining the effects of such stress on anesthetic sensi-
tivity in mice. In particular, researchers have not paid
attention to isolation stress when measuring anesthetic
sensitivity.

We classified male mice into two groups, grouped
mice (GM) and isolated mice (IM), and evaluated how
isolation stress affected enflurane requirements.

This research was conducted with the approval of
the Kagawa Medical University Ethics Committee. The
ddN mice, MSM mice, and C57BL/6J mice were all
male, 8–12 weeks old, and bred under the same condi-
tions. IM were quarantined at 4 weeks after birth from
the brothers (GM) and single parents to except genetic
and environmental factors. The ddN mice were deliv-
ered less than the other strains. Because GM scuffle and
injure each other when housed at less than three ani-
mals per cage, we decided to house them at more than
four animals per cage (Table 1) [4].
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performance liquid chromatography) [9]. ddN: cNE
(IM / GM 0.170 � 0.027 / 0.278 � 0.061), mNE (IM /
GM 0.326 � 0.157 / 0.425 � 0.100), dNE (IM / GM 0.762
� 0.227 / 0.641 � 0.159); C57BL/6J: cNE (IM / GM
0.167 � 0.019 / 0.320 � 0.060), mNE (IM / GM 0.252 �
0.071 / 0.570 � 0.081), dNE (IM / GM 0.782 � 0.165 /
0.733 � 0.118), where c: cerebrum, d: diencephalon, m:
mesencephalon, NE: norepinephrine, mean � SD (µg
per gram of wet brain). NE levels in the cerebrum were
lower in IM than in GM in both ddN and C57BL/6J
mice. Reis reported that threat increased the turnover
of NE and reduced NE levels [7]. However, the correla-
tion between NE and ER was not significant in either
strain. Stress can also change catecholamine levels in
the brain [10–12]. Anesthetic sensitivity can be affected
by changing levels of brain catecholamines, caused by
stress from population density. We suspect that ER un-
der stress may be changed by neurotransmitters. For
example, the concentration of serotonin is low in the
brains of isolated mice [7]. Many neurotransmitters re-
spond to stress.

NE in particular drives mice to perform threatening
behavior or attack [13]. It has been reported that IM
attack other mice more aggressively than GM [6].

Furthermore, mice in nature are timid and hide in
bushes. GM are more resistant than IM to attack from
invaders. Thus, IM are more cautious and more sensi-

Table 1. Environmental conditions of isolated (IM) and
grouped (GM) micea

Strain IM GM

ddN [1], [1], [1], [1] [4], [4]
C57BL/6J [1], [1], [1], [1], [1] [4], [5], [6]
MSM [1], [1], [1], [1], [1] [4], [4], [5]
a [ ]: cage and number of mice in a cage

tive than GM. We suspect that the ratio we found might
apply to other strains with respect to enflurane sensitivi-
ties. The stress of isolation on the weak in nature may
be the same regardless of the strain of mouse. The
dominant mice in an area, which cannot be attacked by
other animals, probably have a different ratio of ER
from GM [3,14].

Stress caused by circumstances strongly affects ER or
catecholamine levels in the brain [10–12]. A naturally
gregarious mouse might suffer death by isolation. It has
been reported that anesthetic sensitivity differs with the
species of experimental animal or with sex [15].

In conclusion, we found that isolation influences
enflurane sensitivity, causing an increase of about
1.2–1.3 times in enflurane requirements. Although
it is already known that acute stress, like stimulation,
affects ER in mice, we must determine the change in
ER by chronic stress. It is necessary to pay attention
to the population density in a cage when measuring
anesthetic sensitivity. Researchers should use grouped
mice, because isolated mice are not physiologically
normal.
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